Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties.
نویسندگان
چکیده
We describe a method for quantifying the mechanical properties of cells in suspension with a microfluidic device consisting of a parallel array of micron-sized constrictions. Using a high-speed charge-coupled device camera, we measure the flow speed, cell deformation, and entry time into the constrictions of several hundred cells per minute during their passage through the device. From the flow speed and the occupation state of the microconstriction array with cells, the driving pressure across each constriction is continuously computed. Cell entry times into microconstrictions decrease with increased driving pressure and decreased cell size according to a power law. From this power-law relationship, the cell elasticity and fluidity can be estimated. When cells are treated with drugs that depolymerize or stabilize the cytoskeleton or the nucleus, elasticity and fluidity data from all treatments collapse onto a master curve. Power-law rheology and collapse onto a master curve are predicted by the theory of soft glassy materials and have been previously shown to describe the mechanical behavior of cells adhering to a substrate. Our finding that this theory also applies to cells in suspension provides the foundation for a quantitative high-throughput measurement of cell mechanical properties with microfluidic devices.
منابع مشابه
Hierarchical Silicon Nanospikes Membrane for Rapid and High-Throughput Mechanical Cell Lysis
This letter reports an efficient and compatible silicon membrane combining the physical properties of nanospikes and microchannel arrays for mechanical cell lysis. This hierarchical silicon nanospikes membrane was created to mechanically disrupt cells for a rapid process with high throughput, and it can be assembled with commercial syringe filter holders. The membrane was fabricated by photoele...
متن کاملImpacts of Nanoparticles and Nano Rod Arrays on Optical Generation Rate in Plasmonic-Based Solar Cells
In this article, the effect of plasmonics properties of metal nanorods and nanoparticles on solar cell performance were investigated and simulated. Due to the classic solar cell disadvantages, it seems that a plasmonic solar cell is one of these methods. In plasmonic solar cells, because of plasmonic effect, a high electric field builds around metal nanoparticles so that high conversion efficie...
متن کاملA high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملA mechanical biomarker of cell state in medicine.
The mechanical properties of cells have been shown to be useful markers of cell state by the biophysics community. Here, I highlight clinical and research problems that this label-free, potentially inexpensive cellular biomarker can address and discuss technical challenges to realize automated instruments to achieve robust and high-throughput mechanical measurements. Important features found in...
متن کاملRock mass structural characterization via short-range digital photogrammetry
Because of the important role of rock mass structural properties on its mechanical behavior, determining the qualitative and quantitative properties of has been a subject of intense research. In this regard, numerous techniques such as scanline surveying, cell mapping, and geologic structure mapping have been proposed. However, applying such field surveying techniques for rock mass properties i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 109 1 شماره
صفحات -
تاریخ انتشار 2015